

CMPA5585025D

25 W, 5.5 - 8.5 GHz, GaN MMIC, Power Amplifier

Cree's CMPA5585025D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage reactively matched amplifier design approach enabling very wide bandwidths to be achieved.

Typical Performance Over 5.5-8.5 GHz $(T_c = 25^{\circ}C)$

Parameter	5.5 GHz	6.5 GHz	7.5 GHz	8.5 GHz	Units
Small Signal Gain	38	31	30	28	dB
P_{OUT} @ P_{IN} = 24 dBm	39	43	37	47	W
Power Gain @ $P_{IN} = 24 \text{ dBm}$	22	22	22	23	dB
PAE @ P _{IN} = 24 dBm	41	43	37	45	%

Features

- 30 dB Small Signal Gain
- 40 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation
- Size 0.142 x 0.188 x 0.004 inches

Applications

- Point to Point Radio
- Communications
- Test Instrumentation
- EMC Amplifier Drivers

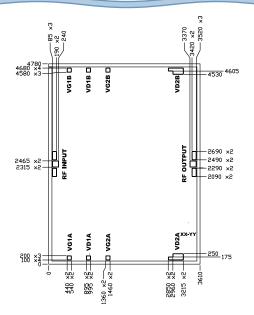
Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	$V_{\scriptscriptstyle DSS}$	84	$V_{_{ m DC}}$	25°C
Gate-source Voltage	V_{GS}	-10, +2	V_{DC}	25°C
Storage Temperature	T _{STG}	-55, +150	°C	°C
Operating Junction Temperature	T,	225	°C	°C
Thermal Resistance, Junction to Case (packaged) ¹	$R_{\theta JC}$	1.55	°C/W	OQPSK, 85° C, $P_{DISS} = 55 \text{ W}$
Thermal Resistance, Junction to Case (packaged) ¹	$R_{_{ heta JC}}$	1.80	°C/W	CW, 85° C, $P_{DISS} = 77 \text{ W}$
Mounting Temperature (30 seconds)	T _s	320	°C	°C

Note¹ Eutectic die attach using 80/20 AuSn solder mounted to a 40 mil thick CPC carrier.

Electrical Characteristics (Frequency = 5.5 GHz to 8.5 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	$V_{\rm GS(TH)}$	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V, } I_{D} = 13.2 \text{ mA}$
Gate Qui Voltage	$V_{GS(Q)}$	-	-2.7	-	V_{DC}	V_{DD} = 28 V, I_{DQ} = 1200 mA
Saturated Drain Current ¹	$I_{\scriptscriptstyle DS}$	9.2	12.9	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{\scriptscriptstyle BD}$	84	100	-	V	V_{GS} = -8 V, I_{D} = 13.2 mA
RF Characteristics ²						
Small Signal Gain	S21	-	30	-	dB	$V_{\scriptscriptstyle DD}$ = 28 V, $I_{\scriptscriptstyle DQ}$ = 1200 mA
Power Output	P _{OUT1}	-	40	-	W	$V_{DD} = 28 \text{ V, } I_{DQ} = 1200 \text{ mA,}$ $P_{IN} = 24 \text{ dBm}$
Power Added Efficiency	PAE	-	40	-	%	V_{DD} = 28 V, I_{DQ} = 1200 mA
Power Gain	G_p	-	22	-	dB	V_{DD} = 28 V, I_{DQ} = 1200 mA
Input Return Loss	S11	-	5	-	dB	V_{DD} = 28 V, I_{DQ} = 1200 mA
Output Return Loss	S22	-	5	-	dB	V_{DD} = 28 V, I_{DQ} = 1200 mA
Output Mismatch Stress	VSWR	-	5:1	-	Ψ	No damage at all phase angles, $V_{DD} = 28$ V, $I_{DQ} = 1200$ mA, $P_{OUT} = 25$ W CW


Notes:

¹ Scaled from PCM data.

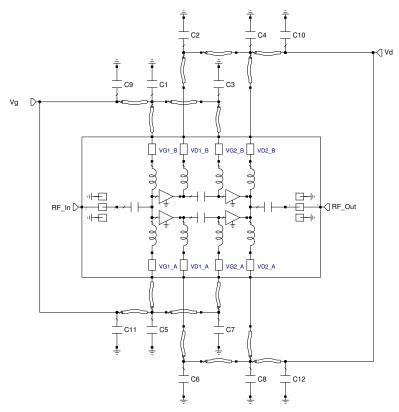
 $^{^{2}}$ All data pulse tested on-wafer with Pulse Width = 10 $\mu s,$ Duty Cycle = 0.1%.

Die Dimensions (units in microns)

Overall die size $3610 \times 4780 \ (+0/-50)$ micron, die thickness $100 \ (+/-10)$ microns. All Gate and Drain pads must be wire bonded for electrical connection.

Pad Number	Function	Description	Pad Size (in)	Note
1	RF-IN	RF-Input pad. Matched to 50 ohm.	150 x 150	3
2	VG1_A	Gate control for stage 1. $V_{\rm G} \sim$ 2.0 - 3.5 V.	100 x 100	1,2
3	VG1_B	Gate control for stage 1. $V_{\rm G} \sim$ 2.0 - 3.5 V.	100 x 100	1,2
4	VD1_A	Drain supply for stage 1. $V_D = 28 \text{ V}$.	100 x 100	1
5	VD1_B	Drain supply for stage 1. $V_D = 28 \text{ V}$.	100 x 100	1
6	VG2_A	Gate control for stage 2A. $V_{\rm G} \sim 2.0$ - 3.5 V.	100 x 100	1,3
7	VG2_B	Gate control for stage 2A. $V_{\rm G} \sim 2.0$ - 3.5 V.	100 x 100	1,3
8	VD2_A	Drain supply for stage 2A. $V_D = 28 \text{ V}$.	-	1
9	VD2_B	Drain supply for stage 2B. $V_D = 28 \text{ V}$.	-	1
10	RF-Out	RF-Output pad. Matched to 50 ohm.	150 x 150	3

Notes

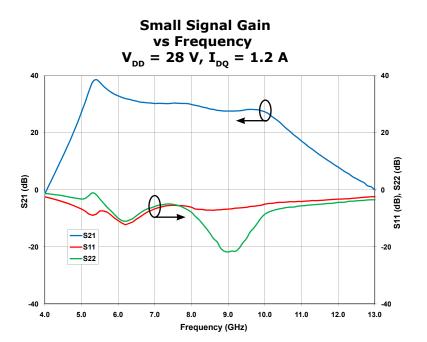

- ¹ Attach bypass capacitor to pads 2-9 per application circuit.
- ² VG1_A and VG1_B are connected internally so it would be enough to connect either one for proper operation.
- ³ VG2_A and VG2_B are connected internally so it would be enough to connect either one for proper operation.
- 4 The RF Input and Output pad have a ground-signal-ground with a nominal pitch of 8 mil (200 um). The RF ground pads are 100 x 200.

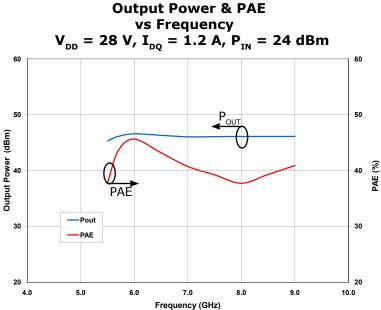
Die Assembly Notes:

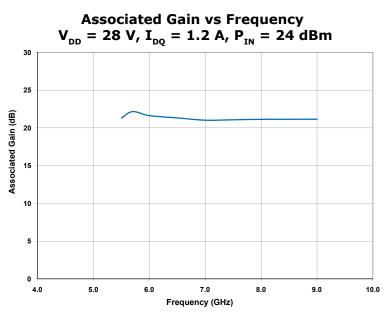
- Recommended solder is AuSn (80/20) solder. Refer to Cree's website for the Eutectic Die Bond Procedure application note at http://www.cree.com/products/wireless appnotes.asp
- Vacuum collet is the preferred method of pick-up.
- The backside of the die is the Source (ground) contact.
- Die back side gold plating is 5 microns thick minimum.
- Thermosonic ball or wedge bonding are the preferred connection methods.
- Gold wire must be used for connections.
- Use the die label (XX-YY) for correct orientation.

Block Diagram Showing Additional Capacitors & Output Matching Section for Operation Over 5.5 to 8.5 GHz

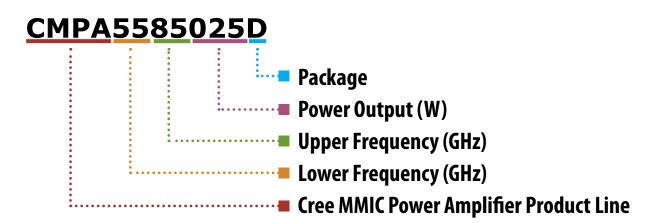
Designator	Description	Quantity
C1,C2,C3,C4,C5,C6,C7,C8	CAP, 51pF, +/-10%, SINGLE LAYER, 0.035", Er 3300, 100V, Ni/ Au TERMINATION	8
C9,C10,C11,C12	CAP, 680pF, +/-10%, SINGLE LAYER, 0.070", Er 3300, 100V, Ni/Au TERMINATION	4


Notes:


¹ The input, output and decoupling capacitors should be attached as close as possible to the die- typical distance is 5 to 10 mils with a maximum of 15 mils.


² The MMIC die and capacitors should be connected with 2 mil gold bond wires.

Simulated Performance of the CMPA5585025D



Part Number System

Parameter	Value	Units	
Lower Frequency	5.5	GHz	
Upper Frequency ¹	8.5	GHz	
Power Output	25	W	
Package	Bare Die	-	

Table 1.

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value	
А	0	
В	1	
С	2	
D	3	
Е	4	
F	5	
G	6	
Н	7	
J	8	
К	9	
Examples:	1A = 10.0 GHz 2H = 27.0 GHz	

Table 2.

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/wireless

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639